English

The General Solution of the Equation 7 Cos 2 X + 3 Sin 2 X = 4 is - Mathematics

Advertisements
Advertisements

Question

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is

Options

  • \[x = 2 n\pi \pm \frac{\pi}{6}, n \in Z\]

     

  • \[x = 2 n\pi \pm \frac{2\pi}{3}, n \in Z\]

     

  • \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
  • none of these

MCQ
Sum

Solution

\[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
Given:
\[7 \cos^2 x + 3 \sin^2 x = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 (1 - \cos^2 x) = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 - 3 \cos^2 x = 4\]
\[ \Rightarrow 4 \cos^2 x + 3 = 4\]
\[ \Rightarrow 4 (1 - \cos^2 x) = 3\]
\[ \Rightarrow 4 \sin^2 x = 3\]
\[ \Rightarrow \sin^2 x = \frac{3}{4}\]
\[ \Rightarrow \sin x = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin x = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{3}, n \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 5 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan θ + sec θ =ex, then cos θ equals


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the general solutions of tan2 2x = 1.

 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×