Advertisements
Advertisements
Question
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
Options
- \[x = 2 n\pi \pm \frac{\pi}{6}, n \in Z\]
- \[x = 2 n\pi \pm \frac{2\pi}{3}, n \in Z\]
- \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
none of these
Solution
Given:
\[7 \cos^2 x + 3 \sin^2 x = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 (1 - \cos^2 x) = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 - 3 \cos^2 x = 4\]
\[ \Rightarrow 4 \cos^2 x + 3 = 4\]
\[ \Rightarrow 4 (1 - \cos^2 x) = 3\]
\[ \Rightarrow 4 \sin^2 x = 3\]
\[ \Rightarrow \sin^2 x = \frac{3}{4}\]
\[ \Rightarrow \sin x = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin x = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{3}, n \in Z\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of cosec x = –2
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan θ + sec θ =ex, then cos θ equals
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the general solutions of tan2 2x = 1.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
The minimum value of 3cosx + 4sinx + 8 is ______.