English

Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π - Mathematics

Advertisements
Advertisements

Question

Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.

Sum

Solution

Here, 2 tan2x + sec2x = 2

Which gives tan x = `+- 1/sqrt(3)`

If we take tan x = `1/sqrt(3)`

Then x = `pi/6` or `(7pi)/6`  

Again, if we take tan x = `(-1)/sqrt(3)`

Then x = `(5pi)/6` or `(11pi)/6`

Therefore, the possible solutions to the above equations are

x = `pi/6, (5pi)/6, (7pi)/6` and `(11pi)/6` where 0 ≤ x ≤ 2π.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Solved Examples [Page 42]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Solved Examples | Q 8 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×