Advertisements
Advertisements
Question
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solution
Now `tan(theta + pi/3) = (tantheta + sqrt(3))/(1 - sqrt(3) tan theta)` and `tan(theta + (2pi)/3)`
= `(tantheta - sqrt(3))/(1 + sqrt(3) tan theta)`
So, `tan(theta + pi/3) + tan(theta + (2pi)/3)`
= `(tantheta + sqrt(3))/(1 - sqrt(3) tantheta) + (tan theta - sqrt(3))/(1 + sqrt(3) tantheta)`
= `((tan theta + sqrt(3))(1 + sqrt(3) tan theta) + (tan theta - sqrt(3))(1 - sqrt(3) tan theta))/(1 - 3tan^2theta)`
= `(tan theta + sqrt(3) + sqrt(3)tan^2theta + 3tantheta + tantheta - sqrt(3)tan^2theta - sqrt(3) + 3tantheta)/(1 - 3tan^2theta)`
= `(8tantheta)/(1 - 3tan^2theta)`
Given, `tantheta + tan(theta + pi/3) + tan(theta + (2pi)/3) = sqrt(3)`
⇒ `tan theta + (8tantheta)/(1 - 3tan^2theta) = sqrt(3)`
⇒ `(tantheta - 3tan^3theta + 8tantheta)/(1 - 3tan^2theta) = sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation sin 2x + cos x = 0
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is incorrect?
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
General solution of \[\tan 5 x = \cot 2 x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to