Topics
Mathematical Reasoning
- Mathematically Acceptable Statements
- New Statements from Old
- Special Words Or Phrases
- Contrapositive and Converse
- Introduction of Validating Statements
- Validation by Contradiction
- Difference Between Contradiction, Converse and Contrapositive
- Consolidating the Understanding
Sets
- Sets and Their Representations
- Empty Set (Null or Void Set)
- Finite and Infinite Sets
- Equal Sets
- Subsets
- Power Set
- Universal Set
- Venn Diagrams
- Intrdouction of Operations on Sets
- Union of Sets
- Intersection of Sets
- Difference of Sets
- Complement of a Set
- Practical Problems on Union and Intersection of Two Sets
- Proper and Improper Subset
- Open and Close Intervals
- Disjoint Sets
- Element Count Set
Sets and Functions
Relations and Functions
- Cartesian Product of Sets
- Concept of Relation
- Concept of Functions
- Some Functions and Their Graphs
- Algebra of Real Functions
- Ordered Pairs
- Equality of Ordered Pairs
- Pictorial Diagrams
- Graph of Function
- Pictorial Representation of a Function
- Exponential Function
- Logarithmic Functions
- Brief Review of Cartesian System of Rectanglar Co-ordinates
Algebra
Trigonometric Functions
- Concept of Angle
- Introduction of Trigonometric Functions
- Signs of Trigonometric Functions
- Domain and Range of Trigonometric Functions
- Trigonometric Functions of Sum and Difference of Two Angles
- Trigonometric Equations
- Trigonometric Functions
- Truth of the Identity
- Negative Function Or Trigonometric Functions of Negative Angles
- 90 Degree Plusminus X Function
- Conversion from One Measure to Another
- 180 Degree Plusminus X Function
- 2X Function
- 3X Function
- Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications
- Graphs of Trigonometric Functions
- Transformation Formulae
- Values of Trigonometric Functions at Multiples and Submultiples of an Angle
- Sine and Cosine Formulae and Their Applications
Coordinate Geometry
Complex Numbers and Quadratic Equations
- Concept of Complex Numbers
- Algebraic Operations of Complex Numbers
- The Modulus and the Conjugate of a Complex Number
- Argand Plane and Polar Representation
- Quadratic Equations
- Algebra of Complex Numbers - Equality
- Algebraic Properties of Complex Numbers
- Need for Complex Numbers
- Square Root of a Complex Number
Calculus
Mathematical Reasoning
Linear Inequalities
Principle of Mathematical Induction
Statistics and Probability
Permutations and Combinations
- Fundamental Principles of Counting
- Permutations
- Combination
- Introduction of Permutations and Combinations
- Permutation Formula to Rescue and Type of Permutation
- Smaller Set from Bigger Set
- Derivation of Formulae and Their Connections
- Simple Applications of Permutations and Combinations
- Factorial N (N!) Permutations and Combinations
Binomial Theorem
- Introduction of Binomial Theorem
- Binomial Theorem for Positive Integral Indices
- General and Middle Terms
- Proof of Binomial Therom by Pattern
- Proof of Binomial Therom by Combination
- Rth Term from End
- Simple Applications of Binomial Theorem
Sequence and Series
Straight Lines
- Slope of a Line
- Various Forms of the Equation of a Line
- General Equation of a Line
- Distance of a Point from a Line
- Brief Recall of Two Dimensional Geometry from Earlier Classes
- Shifting of Origin
- Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
Conic Sections
- Sections of a Cone
- Concept of Circle
- Introduction of Parabola
- Standard Equations of Parabola
- Latus Rectum
- Introduction of Ellipse
- Relationship Between Semi-major Axis, Semi-minor Axis and the Distance of the Focus from the Centre of the Ellipse
- Special Cases of an Ellipse
- Eccentricity
- Standard Equations of an Ellipse
- Latus Rectum
- Introduction of Hyperbola
- Eccentricity
- Standard Equation of Hyperbola
- Latus Rectum
- Standard Equation of a Circle
Introduction to Three-dimensional Geometry
Limits and Derivatives
- Intuitive Idea of Derivatives
- Introduction of Limits
- Introduction to Calculus
- Algebra of Limits
- Limits of Polynomials and Rational Functions
- Limits of Trigonometric Functions
- Introduction of Derivatives
- Algebra of Derivative of Functions
- Derivative of Polynomials and Trigonometric Functions
- Derivative Introduced as Rate of Change Both as that of Distance Function and Geometrically
- Limits of Logarithmic Functions
- Limits of Exponential Functions
- Derivative of Slope of Tangent of the Curve
- Theorem for Any Positive Integer n
- Graphical Interpretation of Derivative
- Derive Derivation of x^n
Statistics
- Measures of Dispersion
- Concept of Range
- Mean Deviation
- Introduction of Variance and Standard Deviation
- Standard Deviation
- Standard Deviation of a Discrete Frequency Distribution
- Standard Deviation of a Continuous Frequency Distribution
- Shortcut Method to Find Variance and Standard Deviation
- Introduction of Analysis of Frequency Distributions
- Comparison of Two Frequency Distributions with Same Mean
- Statistics Concept
- Central Tendency - Mean
- Central Tendency - Median
- Concept of Mode
- Measures of Dispersion - Quartile Deviation
- Standard Deviation - by Short Cut Method
Probability
- Random Experiments
- Introduction of Event
- Occurrence of an Event
- Types of Events
- Algebra of Events
- Exhaustive Events
- Mutually Exclusive Events
- Axiomatic Approach to Probability
- Probability of 'Not', 'And' and 'Or' Events
Notes
Equations involving trigonometric functions of a variable are called trigonometric equations. The solutions of a trigonometric equation for which 0 ≤ x < 2π are called principal solutions. The expression involving integer ‘n’ which gives all solutions of a trigonometric equation is called the general solution.
How will solve a trigonometric equation `2"sin"^2 x+ 7"cos" x= 5`? We shall follow few steps:
1) Reduce variables- Try to reduce the equation to one variable.
`2(1- cos^2 x)+ 7cos x= 5`
2) Simplify equation
`2cos^2 x- 7cos x+ 3= 0`
`2cos^2 x- 6cos x- cos x+3= 0`
`2cos x (cos x-3)-1 (cos x- 3)= 0`
`(2cos x- 1) (cos x- 3)= 0`
`cos x= 1/2` or `cos x= 3`
3) Double check domain and range of varibles
The trigonometric function cos lies between -1, 1
therefore, cos x= `1/2`
we know that cos 60°= `1/2`
thus, x= 60°
4) Find all possible solutions
Principal soultions- 0 ≤ x ≤ 2π
60°, 300°
General solutions-
x= n(2π) ± y
x= 2nπ ± y
Theorem
Theorem 1: For any real numbers x and y,
sin x = sin y implies x = nπ + (–1)n y, where n ∈ Z
Proof :If sin x = sin y, then
sin x – sin y = 0
or `2cos (x+y)/2 sin (x-y)/2= 0`
which gives `cos (x+y)/2= 0` or `sin (x-y)/2= 0`
Therefore `(x+y)/2= (2n+1) π/2` or `(x-y)/2= nπ`, where n ∈ Z
i.e. x = (2n + 1) π – y or x = 2nπ + y, where n∈Z
Hence x = (2n + 1)π + (–1)2n + 1 y or x = 2nπ +(–1)2n y, where n ∈ Z.
Combining these two results, we get x = nπ + (–1)n y, where n ∈ Z.
Theorem 2: For any real numbers x and y, cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
Proof: If cos x = cos y, then
cos x – cos y = 0 i.e.,
-2 sin `(x+y)/2 sin (x-y)/2= 0`
Thus, `sin (x+y)/2= 0` or `sin (x-y)/2= 0`
Therefore, `(x+y)/2= nπ` or `(x-y)/2= nπ`, where n ∈ Z
i.e. x = 2nπ – y or x = 2nπ + y, where n ∈ Z Hence x = 2nπ ± y, where n ∈ Z
Theorem 3:Prove that if x and y are not odd mulitple of `π/2`, then
tan x = tan y implies x = nπ + y, where n ∈ Z
Proof : If tan x = tan y, then tan x – tan y = 0
or `(sin x cos y- cos x sin y)/(cos x cos y)= 0`
which gives sin (x – y) = 0
Therefore x – y = nπ, i.e., x = nπ + y, where n ∈ Z.