English

The Number of Solution in [0, π/2] of the Equation Cos 3 X Tan 5 X = Sin 7 X is - Mathematics

Advertisements
Advertisements

Question

The number of solution in [0, π/2] of the equation cos3xtan5x=sin7x is 

Options

  • 5

  • 7

  • 6

  • none of these

MCQ
Sum

Solution

6
Given:
cos3xtan5x=sin7x
cos(5x2x)tan5x=sin(5x+2x)
tan5x=sin(5x+2x)cos(5x2x)
tan5x=sin5xcos2x+cos5xsin2xcos5xcos2x+sin5xsin2x
sin5xcos5x=sin5xcos2x+cos5xsin2xcos5xcos2x+sin5xsin2x
sin5xcos5xcos2x+sin25xsin2x=sin5xcos5xcos2x+cos25xsin2x
sin25xsin2x=cos25xsin2x
(sin25xcos25x)sin2x=0
(sin5xcos5x)(sin5x+cos5x)sin2x=0
sin5xcos5x=0,sin5x+cos5x=0 or sin2x=0 

sin5xcos5x=1,sin5xcos5x=1
sin2x=0
Now, 
tan5x=1
tan5x=tanπ4
5x=nπ+π4,nZ
x=nπ5+π20,nZ

 For n=0,1 and 2, the values of x are π20,π4 and 9π20, respectively.
Or,
tan5x=1
tan5x=tan3π4
5x=nπ+3π4,nZ
x=nπ5+3π20,nZ
 For n=0 and 1, the values of x are 3π20 and 7π20, respectively .
And,
sin2x=0
sin2x=sin0
2x=nπ,nZ
x=nπ2,nZ
For n = 0, the value of x is 0 . 
 Also, for the odd multiple of π2,tanx is not defined .
Hence, there are six solutions.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 7 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  cotx=-3


Find the general solution of the equation sin 2x + cos x = 0


If tanx=ba , then find the values of a+bab+aba+b.


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

{1+cotxsec(π2+x)}{1+cotx+sec(π2+x)}=2cotx

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

tanA+B2=cotC2

Prove that:

sin10π3cos13π6+cos8π3sin5π6=1

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Which of the following is incorrect?


The value of cos1cos2cos3...cos179 is

 

Find the general solution of the following equation:

sinx=12

Find the general solution of the following equation:

cos3x=12

Find the general solution of the following equation:

sinx=tanx

Solve the following equation:

4sin2x8cosx+1=0

Solve the following equation:

tan2x+(13)tanx3=0

Solve the following equation:

sinx+sin5x=sin3x

Solve the following equation:

cosxcos2xcos3x=14

Solve the following equation:

sin2xsin4x+sin6x=0

Solve the following equation:
3tanx + cot x = 5 cosec x


Write the general solutions of tan2 2x = 1.

 

Write the set of values of a for which the equation

3sinxcosx=a has no solution.

If 3tan(x15)=tan(x+15) 0<x<90, find θ.


The smallest value of x satisfying the equation

3(cotx+tanx)=4 is 

If tanpxtanqx=0, then the values of θ form a series in

 


The smallest positive angle which satisfies the equation ​

2sin2x+3cosx+1=0 is

If 4sin2x=1, then the values of x are

 


A value of x satisfying cosx+3sinx=2 is

 

If esinxesinx4=0, then x =


General solution of tan5x=cot2x is


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.