English

Sin2 π/18 + Sin2 π/9 + Sin2 7π/18 + Sin2 4π/9 = - Mathematics

Advertisements
Advertisements

Question

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =

Options

  • 1

  • 4

  • 2

  • 0

MCQ

Solution

2
We have: 
\[ \sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9}\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{8\pi}{18}\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{8\pi}{18} \right)\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \sin^2 \left( \frac{\pi}{2} - \frac{2\pi}{18} \right) + \sin^2 \left( \frac{\pi}{2} - \frac{\pi}{18} \right)\]
\[ = \sin^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \cos^2 \frac{2\pi}{18} + \cos^2 \frac{\pi}{18}\]
\[ = \sin^2 \frac{\pi}{18} + \cos^2 \frac{\pi}{18} + \sin^2 \frac{2\pi}{18} + \cos^2 \frac{2\pi}{18}\]
\[ = 1 + 1\]
\[ = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 17 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×