Advertisements
Advertisements
Question
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Solution
\[90^\circ = \frac{\pi}{2}\]
We have:
\[ cosec\left( 90^\circ + \theta \right) + x \cos \theta \cot\left( 90^\circ + \theta \right) = \sin\left( 90^\circ + \theta \right)\]
\[ \Rightarrow \sec \theta + x \cos \theta \left[ - \tan \theta \right] = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta tan\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta \times \frac{\sin \theta}{\cos \theta} = \cos \theta\]
\[ \Rightarrow \sec \theta - x \sin\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - \cos \theta = x \sin\theta$\]
\[ \Rightarrow \frac{1}{\cos \theta} - cos\theta = x \sin\theta\]
\[ \Rightarrow \frac{1 - \cos^2 \theta}{\cos \theta} = x \sin\theta$\]
\[ \Rightarrow \frac{\sin^2 \theta}{cos\theta} = x \sin\theta\]
\[ \Rightarrow \frac{\sin^2 \theta}{\cos \theta \sin \theta} = x\]
\[ \Rightarrow \frac{\sin \theta}{\cos \theta} = x\]
\[ \Rightarrow \tan\theta = x\]
\[ \therefore x = \tan\theta\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If sec x + tan x = k, cos x =
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the general solutions of tan2 2x = 1.
Write the set of values of a for which the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x