English

Find X from the Following Equations: C O S E C ( π 2 + θ ) + X Cos θ Cot ( π 2 + θ ) = Sin ( π 2 + θ ) - Mathematics

Advertisements
Advertisements

Question

Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]

Solution

\[90^\circ = \frac{\pi}{2}\]
 We have: 
\[ cosec\left( 90^\circ + \theta \right) + x \cos \theta \cot\left( 90^\circ + \theta \right) = \sin\left( 90^\circ + \theta \right)\]
\[ \Rightarrow \sec \theta + x \cos \theta \left[ - \tan \theta \right] = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta tan\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - x cos\theta \times \frac{\sin \theta}{\cos \theta} = \cos \theta\]
\[ \Rightarrow \sec \theta - x \sin\theta = \cos \theta\]
\[ \Rightarrow \sec \theta - \cos \theta = x \sin\theta$\]
\[ \Rightarrow \frac{1}{\cos \theta} - cos\theta = x \sin\theta\]
\[ \Rightarrow \frac{1 - \cos^2 \theta}{\cos \theta} = x \sin\theta$\]
\[ \Rightarrow \frac{\sin^2 \theta}{cos\theta} = x \sin\theta\]
\[ \Rightarrow \frac{\sin^2 \theta}{\cos \theta \sin \theta} = x\]
\[ \Rightarrow \frac{\sin \theta}{\cos \theta} = x\]
\[ \Rightarrow \tan\theta = x\]
\[ \therefore x = \tan\theta\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 8.1 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If sec x + tan x = k, cos x =


Which of the following is correct?


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the general solutions of tan2 2x = 1.

 

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×