Advertisements
Advertisements
Question
Which of the following is correct?
Options
- \[\sin1^\circ > \sin1\]
- \[\sin1^\circ < \sin1\]
- \[\sin1^\circ = \sin1\]
- \[\sin1^\circ = \frac{\pi}{180}\sin1\]
Solution
We know that, 1 radian is approximately 57º.
Also, the value of sin x is always increasing for \[0 \leq x \leq 90^\circ\] ( or sin x is an increasing function for \[0 \leq x \leq 90^\circ\] ).
Now,
\[1^\circ < 57^\circ\]
\[Or 1^\circ < 1\text{ radian }\]
\[ \therefore \sin1^\circ < \sin1\]
Hence, the correct answer is option \[\sin1^\circ < \sin1\].
APPEARS IN
RELATED QUESTIONS
Find the general solution of cosec x = –2
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x