Advertisements
Advertisements
Question
Find the general solution of the following equation:
Solution
We have:
⇒ \[\sin2x = \sin \frac{\pi}{3}\]
⇒ \[2x = n\pi + ( - 1 )^n \frac{\pi}{3}\]
⇒ \[x = \frac{n\pi}{2} + ( - 1 )^n \frac{\pi}{6}\],
APPEARS IN
RELATED QUESTIONS
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that
In a ∆ABC, prove that:
Prove that:
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the solution set of the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.