English

Find the General Solution of the Following Equation: Sin 2 X = √ 3 2 - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]
Sum

Solution

We have:

\[\sin2x = \frac{\sqrt{3}}{2}\]

⇒ \[\sin2x = \sin \frac{\pi}{3}\]

⇒ \[2x = n\pi + ( - 1 )^n \frac{\pi}{3}\]

\[n \in Z\]

⇒ \[x = \frac{n\pi}{2} + ( - 1 )^n \frac{\pi}{6}\],

\[n \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 2.01 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×