Advertisements
Advertisements
Question
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solution
\[3 - 2 \cos x - 4 \sin x - \cos 2x + \sin 2x = 0\]
\[ \Rightarrow 3 - 2 \cos x - 4 \sin x - \left( 1 - 2 \sin^2 x \right) + 2 \sin x \cos x = 0\]
\[ \Rightarrow 3 - 2 \cos x - 4 \sin x - 1 + 2 \sin^2 x + 2 \sin x \cos x = 0\]
\[ \Rightarrow \left( 2 \sin^2 x - 4 \sin x + 2 \right) + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow 2\left( \sin^2 x - 2 \sin x + 1 \right) + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow 2 \left( \sin x - 1 \right)^2 + 2 \cos x\left( \sin x - 1 \right) = 0\]
\[ \Rightarrow \left( \sin x - 1 \right)\left( 2 \sin x - 2 + 2 \cos x \right) = 0\]
\[ \Rightarrow 2\left( \sin x - 1 \right)\left( \sin x + \cos x - 1 \right) = 0\]
\[ \Rightarrow \left( \sin x - 1 \right) = 0\text{ or }\left( \sin x + \cos x - 1 \right) = 0\]
\[ \Rightarrow \sin x = 1\text{ or }\sin x + \cos x = 1\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\sin \frac{\pi}{4} \sin x + \cos \frac{\pi}{4}\cos x = \cos \frac{\pi}{4}\]
\[ \Rightarrow \sin x = \sin\frac{\pi}{2}\text{ or }\cos \left( x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{2}\text{ or }x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{2}\text{ or }x = 2n\pi + \frac{\pi}{2}\text{ or }x = 2n\pi, n \in \mathbb{Z}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If sec x + tan x = k, cos x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.