English

Prove That: Sec ( 3 π 2 − X ) Sec ( X − 5 π 2 ) + Tan ( 5 π 2 + X ) Tan ( X − 3 π 2 ) = − 1 - Mathematics

Advertisements
Advertisements

Question

Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]

Solution

LHS = \[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right)\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left[ - \left( \frac{5\pi}{2} - x \right) \right] + \tan\left( \frac{5\pi}{2} + x \right)\tan\left[ - \left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) + \tan\left( \frac{5\pi}{2} + x \right)\left[ - \tan\left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) - \tan\left( \frac{5\pi}{2} + x \right)\tan\left( \frac{3\pi}{2} - x \right)\]
\[ = \sec\left( \frac{\pi}{2} \times 3 - x \right)\sec\left( \frac{\pi}{2} \times 5 - x \right) - \tan\left( \frac{\pi}{2} \times 5 + x \right)\tan\left( \frac{\pi}{2} \times 3 - x \right)\]
\[ = \left[ - cosec x \right]\left[ cosec x \right] - \left[ - \cot x \right]\cot x \]
\[ = - {cosec}^2 x + \cot^2 x\]
\[ = - \left[ {cosec}^2 x - \cot^2 x \right]\]
\[ = - 1\]
 = RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 5 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Which of the following is incorrect?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


General solution of \[\tan 5 x = \cot 2 x\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×