Advertisements
Advertisements
Question
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Solution
LHS = \[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right)\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left[ - \left( \frac{5\pi}{2} - x \right) \right] + \tan\left( \frac{5\pi}{2} + x \right)\tan\left[ - \left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) + \tan\left( \frac{5\pi}{2} + x \right)\left[ - \tan\left( \frac{3\pi}{2} - x \right) \right]\]
\[ = \sec\left( \frac{3\pi}{2} - x \right)\sec\left( \frac{5\pi}{2} - x \right) - \tan\left( \frac{5\pi}{2} + x \right)\tan\left( \frac{3\pi}{2} - x \right)\]
\[ = \sec\left( \frac{\pi}{2} \times 3 - x \right)\sec\left( \frac{\pi}{2} \times 5 - x \right) - \tan\left( \frac{\pi}{2} \times 5 + x \right)\tan\left( \frac{\pi}{2} \times 3 - x \right)\]
\[ = \left[ - cosec x \right]\left[ cosec x \right] - \left[ - \cot x \right]\cot x \]
\[ = - {cosec}^2 x + \cot^2 x\]
\[ = - \left[ {cosec}^2 x - \cot^2 x \right]\]
\[ = - 1\]
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.