Advertisements
Advertisements
Question
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Solution
\[\sin x + \cos x = m\] (Given)
\[\text{To prove:} \sin^6 x + \cos^6 x = \frac{4 - 3 ( m^2 - 1 )^2}{4},\text{ where }m^2 \leq 2\]
Proof:
LHS:
\[ \sin^6 x + \cos^6 x \]
\[ = \left( \sin^2 x \right)^3 + \left( \cos^2 x \right)^3 \]
\[ = \left( \sin^2 x + \cos^2 x \right)^3 - 3 \sin^2 x \cos^2 x\left( \sin^2 x + \cos^2 x \right)\]
\[ = 1 - 3 \sin^2 x \cos^2 x\]
RHS:
\[ \frac{4 - 3 ( m^2 - 1 )^2}{4} \]
\[ = \frac{4 - 3 \left[ \left( \sin x + \cos x \right)^2 - 1 \right]^2}{4}\]
\[ = \frac{4 - 3 \left[ \sin^2 x + \cos^2 x + 2\sin x \cos x - 1 \right]^2}{4}\]
\[ = \frac{4 - 3 \left[ \sin^2 x - \left( 1 - \cos^2 x \right) + 2 \sin x \cos x \right]^2}{4}\]
\[ = \frac{4 - 3 \times 4 \sin^2 x \cos^2 x}{4}\]
\[ = 1 - 3 \sin^2 x \cos^2 x\]
LHS = RHS
Hence proved
APPEARS IN
RELATED QUESTIONS
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
In a ∆ABC, prove that:
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the solution set of the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.