English

If Sin X + Cos X = M , Then Prove that Sin 6 X + Cos 6 X = 4 − 3 ( M 2 − 1 ) 2 4 , Where M 2 ≤ 2 - Mathematics

Advertisements
Advertisements

Question

If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]

Solution

\[\sin x + \cos x = m\] (Given)

\[\text{To prove:} \sin^6 x + \cos^6 x = \frac{4 - 3 ( m^2 - 1 )^2}{4},\text{ where }m^2 \leq 2\]

Proof: 

LHS: 

\[ \sin^6 x + \cos^6 x \]

\[ = \left( \sin^2 x \right)^3 + \left( \cos^2 x \right)^3 \]

\[ = \left( \sin^2 x + \cos^2 x \right)^3 - 3 \sin^2 x \cos^2 x\left( \sin^2 x + \cos^2 x \right)\]

\[ = 1 - 3 \sin^2 x \cos^2 x\]

RHS:

\[ \frac{4 - 3 ( m^2 - 1 )^2}{4} \]

\[ = \frac{4 - 3 \left[ \left( \sin x + \cos x \right)^2 - 1 \right]^2}{4}\]

\[ = \frac{4 - 3 \left[ \sin^2 x + \cos^2 x + 2\sin x \cos x - 1 \right]^2}{4}\]

\[ = \frac{4 - 3 \left[ \sin^2 x - \left( 1 - \cos^2 x \right) + 2 \sin x \cos x \right]^2}{4}\]

\[ = \frac{4 - 3 \times 4 \sin^2 x \cos^2 x}{4}\]

\[ = 1 - 3 \sin^2 x \cos^2 x\]

LHS = RHS

Hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 23 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


General solution of \[\tan 5 x = \cot 2 x\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×