Advertisements
Advertisements
Question
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
Options
a2 + b2 + 2ac = 0
a2 – b2 + 2ac = 0
a2 + c2 + 2ab = 0
a2 – b2 – 2ac = 0
Solution
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation a2 – b2 + 2ac = 0.
Explanation:
Given that sin θ and cos θ are the roots of the equation ax2 – bx + c = 0
So sin θ + cos θ = `b/a` and sin θ cos θ = `c/a`
Using the identity (sinθ + cos θ)2 = sin2θ + cos2θ + 2 sin θ cos θ
We have `b^2/a^2 = 1 + (2c)/a`
or a2 – b2 + 2ac = 0
APPEARS IN
RELATED QUESTIONS
Find the general solution of cosec x = –2
Find the general solution of the equation sin 2x + cos x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x