Advertisements
Advertisements
Question
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Solution
\[cosec x - \sin x = a^3 \]
\[ \therefore \frac{1}{\sin x} - \sin = a^3 \]
\[ \Rightarrow \frac{1 - \sin^2 x}{\sin x} = a^3 \]
\[ \Rightarrow \frac{\cos^2 x}{\sin x} = a^3 \]
\[ \Rightarrow a = \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} . . . . (i)\]
\[\text{ Also, }\sec x - \cos x = b^3 \]
\[ \Rightarrow \frac{1}{\cos x} - \cos = b^3 \]
\[ \Rightarrow \frac{1 - \cos^2 x}{\cos x} = b^3 \]
\[ \Rightarrow \frac{\sin^2 x}{\cos x} = b^3 \]
\[ \Rightarrow b = \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} . . . . . (ii)\]
\[\text{ Now, LHS }= a^2 b^2 \left( a^2 + b^2 \right) = \left( ab \right)^2 \left( a^2 + b^2 \right)\]
\[ = \left[ \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right]^2 \left[ \left( \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \right)^2 + \left( \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right)^2 \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^2 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3}} + \frac{\left( \sin^2 x \right)^\frac{2}{3}}{\left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^3 x \right)^\frac{2}{3} + \left( \sin^3 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3} \left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\cos^2 x + \sin^2 x}{\left( \sin x \cos x \right)^\frac{2}{3}} \right]\]
= 1 = RHS
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of cosec x = –2
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the general solutions of tan2 2x = 1.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x