Advertisements
Advertisements
प्रश्न
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
उत्तर
\[cosec x - \sin x = a^3 \]
\[ \therefore \frac{1}{\sin x} - \sin = a^3 \]
\[ \Rightarrow \frac{1 - \sin^2 x}{\sin x} = a^3 \]
\[ \Rightarrow \frac{\cos^2 x}{\sin x} = a^3 \]
\[ \Rightarrow a = \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} . . . . (i)\]
\[\text{ Also, }\sec x - \cos x = b^3 \]
\[ \Rightarrow \frac{1}{\cos x} - \cos = b^3 \]
\[ \Rightarrow \frac{1 - \cos^2 x}{\cos x} = b^3 \]
\[ \Rightarrow \frac{\sin^2 x}{\cos x} = b^3 \]
\[ \Rightarrow b = \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} . . . . . (ii)\]
\[\text{ Now, LHS }= a^2 b^2 \left( a^2 + b^2 \right) = \left( ab \right)^2 \left( a^2 + b^2 \right)\]
\[ = \left[ \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right]^2 \left[ \left( \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \right)^2 + \left( \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right)^2 \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^2 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3}} + \frac{\left( \sin^2 x \right)^\frac{2}{3}}{\left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^3 x \right)^\frac{2}{3} + \left( \sin^3 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3} \left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\cos^2 x + \sin^2 x}{\left( \sin x \cos x \right)^\frac{2}{3}} \right]\]
= 1 = RHS
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan θ + sec θ =ex, then cos θ equals
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the set of values of a for which the equation
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.