हिंदी

If C O S E C X − Sin X = a 3 , Sec X − Cos X = B 3 , Then Prove that a 2 B 2 ( a 2 + B 2 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]

उत्तर

\[cosec x - \sin x = a^3 \]
\[ \therefore \frac{1}{\sin x} - \sin = a^3 \]
\[ \Rightarrow \frac{1 - \sin^2 x}{\sin x} = a^3 \]
\[ \Rightarrow \frac{\cos^2 x}{\sin x} = a^3 \]
\[ \Rightarrow a = \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} . . . . (i)\]
\[\text{ Also, }\sec x - \cos x = b^3 \]
\[ \Rightarrow \frac{1}{\cos x} - \cos = b^3 \]
\[ \Rightarrow \frac{1 - \cos^2 x}{\cos x} = b^3 \]
\[ \Rightarrow \frac{\sin^2 x}{\cos x} = b^3 \]
\[ \Rightarrow b = \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} . . . . . (ii)\]
\[\text{ Now, LHS }= a^2 b^2 \left( a^2 + b^2 \right) = \left( ab \right)^2 \left( a^2 + b^2 \right)\]
\[ = \left[ \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right]^2 \left[ \left( \left( \frac{\cos^2 x}{\sin x} \right)^\frac{1}{3} \right)^2 + \left( \left( \frac{\sin^2 x}{\cos x} \right)^\frac{1}{3} \right)^2 \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^2 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3}} + \frac{\left( \sin^2 x \right)^\frac{2}{3}}{\left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\left( \cos^3 x \right)^\frac{2}{3} + \left( \sin^3 x \right)^\frac{2}{3}}{\left( \sin x \right)^\frac{2}{3} \left( \cos x \right)^\frac{2}{3}} \right]\]
\[ = \left( \sin x \cos x \right)^\frac{2}{3} \left[ \frac{\cos^2 x + \sin^2 x}{\left( \sin x \cos x \right)^\frac{2}{3}} \right]\]
 = 1 = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.1 | Q 21 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of cosec x = –2


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If tan θ + sec θ =ex, then cos θ equals


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


General solution of \[\tan 5 x = \cot 2 x\] is


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×