Advertisements
Advertisements
प्रश्न
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
उत्तर
Given:
tanx + secx = 2 cosx
\[\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \frac{\sin x + 1}{\cos x} = 2 \cos x\]
\[ \Rightarrow \sin x + 1 = 2 \cos^2 x\]
\[ \Rightarrow \sin x = 2 \cos^2 x - 1\]
\[\Rightarrow 2\left( 1 - \sin^2 x \right) - 1 = \sin x\]
\[ \Rightarrow 2 - 2 \sin^2 x - 1 = \sin x\]
\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin^2 x + 2\sin x - \sin x - 1 = 0\]
\[ \Rightarrow 2\sin x\left( \sin x + 1 \right) - 1\left( \sin x + 1 \right) = 0\]
\[ \Rightarrow \left( \sin x + 1 \right)\left( 2\sin x - 1 \right) = 0\]
\[ \Rightarrow \sin x + 1 = 0\text{ or }2\sin x - 1 = 0\]
\[ \Rightarrow \sin x = - 1\text{ or }\sin x = \frac{1}{2}\]
Now,
\[\sin x = - 1\]
\[ \Rightarrow \sin x = \sin\left( \frac{3\pi}{2} \right)\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{3\pi}{2}, n \in Z\]
Because it contains an odd multiple of `pi/2` and we know that tan x and sec x are undefined on the odd multiple, this value will not satisfy the given equation.
And,
\[\sin x = \frac{1}{2}\]
\[ \Rightarrow \sin x = \sin\left( \frac{\pi}{6} \right)\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]
Now,
\[\text{ For } n = 0, x = \frac{\pi}{6}\]
\[\text{ For }n = 1, x = \frac{11\pi}{6} \]
For other values of n, the condition is not true.
Hence, the given equation has two solutions in
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the set of values of a for which the equation
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cot x - \tan x = \sec x\], then, x is equal to
General solution of \[\tan 5 x = \cot 2 x\] is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
The minimum value of 3cosx + 4sinx + 8 is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.