हिंदी

If cos x + √ 3 sin x = 2 , then x = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 

विकल्प

  • \[\pi/3\]

     

  • \[2\pi/3\]

     

  • \[4\pi/6\]

     

  • \[5\pi/12\]

     

MCQ
योग

उत्तर

`pi/3`
Given:
\[\cos x + \sqrt{3}\sin x = 2\] ...(i)
This equation is of the form \[a \cos x + b \sin x = c\], where

\[a = 1, b = \sqrt{3}\] and c = 2
Let: \[a = r \cos \alpha\text{ and }b = \sin \alpha\]
Now,
\[1 = r \cos \alpha , \sqrt{3} = r \sin \alpha\]
\[\Rightarrow r = \sqrt{a^2 + b^2} = \sqrt{1 + 3} = \sqrt{4} = 2\]
And,
\[\tan\alpha = \frac{b}{a} \]
\[ \Rightarrow \tan\alpha = \frac{\sqrt{3}}{1} \]
\[ \Rightarrow \tan\alpha = \sqrt{3}\]
\[\Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\text{ and }b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:

\[r \cos x \cos \alpha + r \sin x \sin \alpha = 2\]

\[ \Rightarrow r \cos ( x - \alpha) = 2\]

\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]

\[ \Rightarrow x - \frac{\pi}{3} = 2n\pi \pm 0\]

\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}\]

For n = 0, x = `pi/3`

`therefore x= pi/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 2 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


sin6 A + cos6 A + 3 sin2 A cos2 A =


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×