Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
Now,
\[ \Rightarrow \tan x + \tan2x + \left( \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} \right) = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x\tan2x) + \tan x + \tan2x = 0\]
\[ \Rightarrow (\tan x + \tan2x) (2 - \tan x \tan2x) = 0\]
\[\tan x + \tan2x = 0 \]
\[ \Rightarrow \tan x = - \tan2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x \]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]
And,
\[2 - \tan x \tan2x = 0 \]
\[ \Rightarrow \tan x \tan2x = 2 \]
\[ \Rightarrow \frac{\sin x}{\cos x}\frac{\sin2x}{\cos2x} = 2\]
\[ \Rightarrow \frac{2 \sin^2 x \cos x}{\cos x} = 2 \cos^2 x - 2 \sin^2 x\]
\[ \Rightarrow 4 \sin^2 x = 2 \cos^2 x \]
\[ \Rightarrow \tan^2 x = \frac{1}{2} \Rightarrow \tan^2 x = \tan^2 \alpha \]
\[ \Rightarrow x = m\pi + \alpha, m \in Z, \alpha = \tan^{- 1} \left( \frac{1}{2} \right)\]
∴ \[x = \frac{n\pi}{3}, n \in Z\] or
Here,
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
The minimum value of 3cosx + 4sinx + 8 is ______.