हिंदी

The minimum value of 3cosx + 4sinx + 8 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The minimum value of 3cosx + 4sinx + 8 is ______.

विकल्प

  • 5

  • 9

  • 7

  • 3

MCQ
रिक्त स्थान भरें

उत्तर

The minimum value of 3cosx + 4sinx + 8 is 3.

Explanation:

The given expression is 3cosx + 4sinx + 8

Let y = 3cosx + 4sinx + 8

⇒ y – 8 = 3cosx + 4sinx

Minimum value of y – 8 = `sqrt((3)^2 + (4)^2`

⇒  y – 8 = `-sqrt(9 + 16)` = – 5

⇒ y = 8 – 5 = 3

So, the minimum value of the given expression is 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 41 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If sec x + tan x = k, cos x =


Which of the following is incorrect?


Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×