Advertisements
Advertisements
प्रश्न
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
उत्तर
2sin2θ = 3cosθ
We know that,
sin2θ = 1 – cos2θ
Given that,
2sin2θ = 3 cosθ
2 – 2cos2θ = 3cosθ
2cos2θ + 3cosθ – 2 = 0
(cosθ + 2)(2cosθ – 1) = 0
Therefore,
cosθ = `1/2 = cos pi/3`
θ = `pi/3` or `2π – pi/3`
θ = `pi/3, (5pi)/3`
Therefore, 2(1 – cos2θ) = 3cosθ
⇒ 2 – 2cos2θ = 3cosθ
⇒ 2cos2θ + 3cosθ – 2 = 0
⇒ 2cos2θ + 4cosθ – cosθ – 2 = 0
⇒ 2cosθ(cosθ + 2) + 1(cosθ + 2) = 0
⇒ (2cosθ + 1)(cosθ + 2) = 0
Since, cosθ ∈ [–1, 1], for any value θ.
So, cosθ ≠ –2
Therefore,
2cosθ – 1 = 0
⇒ cosθ = `1/2`
= `pi/3` or `2π – pi/3`
θ = `π/3, (5pi)/3`
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ