हिंदी

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.

योग

उत्तर

2sin2θ = 3cosθ

We know that,

sin2θ = 1 – cos2θ

Given that,

2sin2θ = 3 cosθ

2 – 2cos2θ = 3cosθ

2cos2θ + 3cosθ – 2 = 0

(cosθ + 2)(2cosθ – 1) = 0

Therefore,

cosθ = `1/2 = cos  pi/3`

θ = `pi/3` or `2π  –  pi/3`

θ = `pi/3, (5pi)/3`

Therefore, 2(1 – cos2θ) = 3cosθ

⇒ 2 – 2cos2θ = 3cosθ

⇒ 2cos2θ + 3cosθ – 2 = 0

⇒ 2cos2θ + 4cosθ – cosθ – 2 = 0

⇒ 2cosθ(cosθ + 2) + 1(cosθ + 2) = 0

⇒ (2cosθ + 1)(cosθ + 2) = 0

Since, cosθ ∈ [–1, 1], for any value θ.

So, cosθ ≠ –2

Therefore,

2cosθ – 1 = 0

⇒ cosθ = `1/2`

= `pi/3` or `2π  –  pi/3`

θ = `π/3, (5pi)/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 18 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×