Advertisements
Advertisements
प्रश्न
Solve the following equation:
3tanx + cot x = 5 cosec x
उत्तर
\[3 \tan x + \cot x = 5 cosec x\]
\[ \Rightarrow \frac{3 \sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow \frac{3 \sin^2 x + \cos^2 x}{\cos x \sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow 3\left( 1 - \cos^2 x \right) + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 3 - 3 \cos^2 x + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 2 \cos^2 x + 5 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x + 6 \cos x - \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x\left( \cos x + 3 \right) - 1\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right)\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right) = 0\text{ or }\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\text{ or }\cos x = - 3\]
\[\cos x = - 3\text{ is not possible }\left( \because - 1 \leq \cos x \leq 1 \right)\]
\[ \Rightarrow \cos x = \cos\frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
The minimum value of 3cosx + 4sinx + 8 is ______.