हिंदी

Solve the Following Equation: 3tanx + Cot X = 5 Cosec X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
3tanx + cot x = 5 cosec x

योग

उत्तर

\[3 \tan x + \cot x = 5 cosec x\]
\[ \Rightarrow \frac{3 \sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow \frac{3 \sin^2 x + \cos^2 x}{\cos x \sin x} = \frac{5}{\sin x}\]
\[ \Rightarrow 3\left( 1 - \cos^2 x \right) + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 3 - 3 \cos^2 x + \cos^2 x = 5 \cos x\]
\[ \Rightarrow 2 \cos^2 x + 5 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos^2 x + 6 \cos x - \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x\left( \cos x + 3 \right) - 1\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right)\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \left( 2 \cos x - 1 \right) = 0\text{ or }\left( \cos x + 3 \right) = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\text{ or }\cos x = - 3\]
\[\cos x = - 3\text{ is not possible }\left( \because - 1 \leq \cos x \leq 1 \right)\]
\[ \Rightarrow \cos x = \cos\frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 7.9 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation sec x = 2


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation sin 2x + cos x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×