हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360° sin4x = sin2x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x

योग

उत्तर

sin4x – sin2x = 0

sin2 x (sin2 x – 1) = 0

sin2 x [– (1 – sin2 x)] = 0

sin2x × – cos2x = 0

– sin2x cos2x = 0

(sin x cos x)2 = 0

`(1/2 xx 2 sin cos x)^2` = 0

`1/4 sin 2x` = 0

sin 2x = 0

The general solution is

2x = nπ, n ∈ Z

x = `("n"pi)/2`, n ∈ Z

When n = 0, x = `(0 xx pi)/2` = 0 ∉ (0°, 360°)

When n = 1, x = `pi/2` = ∈ (0°, 360°)

When n = 2, x = `(2pi)/2` = π ∈ (0°, 360°)

When n = 3, x = `(3pi)/2` = ∈ (0°, 360°)

When n = 4, x = `(4pi)/2` = 2π ∉ (0°, 360°)

∴ The values of x are `pi/2`, π, `(3pi)/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 2. (i) | पृष्ठ १३३

संबंधित प्रश्न

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×