Advertisements
Advertisements
प्रश्न
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
उत्तर
sin4x – sin2x = 0
sin2 x (sin2 x – 1) = 0
sin2 x [– (1 – sin2 x)] = 0
sin2x × – cos2x = 0
– sin2x cos2x = 0
(sin x cos x)2 = 0
`(1/2 xx 2 sin cos x)^2` = 0
`1/4 sin 2x` = 0
sin 2x = 0
The general solution is
2x = nπ, n ∈ Z
x = `("n"pi)/2`, n ∈ Z
When n = 0, x = `(0 xx pi)/2` = 0 ∉ (0°, 360°)
When n = 1, x = `pi/2` = ∈ (0°, 360°)
When n = 2, x = `(2pi)/2` = π ∈ (0°, 360°)
When n = 3, x = `(3pi)/2` = ∈ (0°, 360°)
When n = 4, x = `(4pi)/2` = 2π ∉ (0°, 360°)
∴ The values of x are `pi/2`, π, `(3pi)/2`
APPEARS IN
संबंधित प्रश्न
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\cot x - \tan x = \sec x\], then, x is equal to
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)