हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360° 2 cos2x + 1 = – 3 cos x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x

योग

उत्तर

2 cos2x + 1 = – 3 cos x

2 cos2x + 3 cos x + 1 = 0

2 cos2x + 2 cos x + cos x + 1 = 0

2 cos x (cos x + 1) + 1(cos x + 1) = 0

(2 cos x + 1)(cos x + 1) = 0

2 cos x + 1 = 0 or cos x + 1 = 0

cos x = `- 1/2` or cos x = – 1

To find the solution of cos x = `- 1/2`

cos x = ` - 1/2`

cos x = `cos (pi - pi/3)`

x = `pi - pi/3`

= `(3pi - pi)/3`

= `(2pi)/3`

General solution is x = `2"n"pi + (2pi)/3`, n ∈ Z

x = `2"n"pi + (2pi)/3`

or

x = `2"n"pi - (2pi)/3`, n ∈ Z

Consider x = `2"n"pi + (2pi)/3`

When n = 0, x = `0 + (2pi)/3 = (2pi)/3` ∈ (0°, 360°)

When n = 1, x = `2pi + (2pi)/3 = (6pi + 2pi)/3 = (8pi)/3` ∉ (0°, 360°)

Consider x = `2"n"pi - (2pi)/3`

When n = 0, x = `0 - (2pi)/3 = - (2pi)/3` ∈ (0°, 360°)

When n = 1, x = `2pi - (2pi)/3 = (6pi - 2pi)/3 = (4pi)/3` ∈ (0°, 360°)

When n = 2, x = `4pi - (2pi)/3 = (12pi - 2pi)/3 = (10pi)/3` ∉ (0°, 360°)

To find the solution of cos x = – 1

cos x = – 1

cos x = cos π

The general solution is

x = 2nπ ± π, n ∈ Z

x = 2nπ + π or x = 2nπ – π, n ∈ Z

Consider x = 2nπ + π

When n = 0 , x = 0 + π = π ∈ (0°, 360°)

When n = 1 , x = 2π + π = 3π ∉ (0°, 360°)

Consider x = 2nπ – π

When n = 0, x = 0 – π ∉ (0°, 360°)

When n = 1, x = 2π – π = π ∈ (0°, 360°)

When n = 2, x = 4π – π = 3π ∉ (0°, 360°)

∴ The required solution are x = `(2pi)/3, (4pi)/3, pi`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 2. (ii) | पृष्ठ १३३

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×