Advertisements
Advertisements
प्रश्न
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
उत्तर
2 cos2x + 1 = – 3 cos x
2 cos2x + 3 cos x + 1 = 0
2 cos2x + 2 cos x + cos x + 1 = 0
2 cos x (cos x + 1) + 1(cos x + 1) = 0
(2 cos x + 1)(cos x + 1) = 0
2 cos x + 1 = 0 or cos x + 1 = 0
cos x = `- 1/2` or cos x = – 1
To find the solution of cos x = `- 1/2`
cos x = ` - 1/2`
cos x = `cos (pi - pi/3)`
x = `pi - pi/3`
= `(3pi - pi)/3`
= `(2pi)/3`
General solution is x = `2"n"pi + (2pi)/3`, n ∈ Z
x = `2"n"pi + (2pi)/3`
or
x = `2"n"pi - (2pi)/3`, n ∈ Z
Consider x = `2"n"pi + (2pi)/3`
When n = 0, x = `0 + (2pi)/3 = (2pi)/3` ∈ (0°, 360°)
When n = 1, x = `2pi + (2pi)/3 = (6pi + 2pi)/3 = (8pi)/3` ∉ (0°, 360°)
Consider x = `2"n"pi - (2pi)/3`
When n = 0, x = `0 - (2pi)/3 = - (2pi)/3` ∈ (0°, 360°)
When n = 1, x = `2pi - (2pi)/3 = (6pi - 2pi)/3 = (4pi)/3` ∈ (0°, 360°)
When n = 2, x = `4pi - (2pi)/3 = (12pi - 2pi)/3 = (10pi)/3` ∉ (0°, 360°)
To find the solution of cos x = – 1
cos x = – 1
cos x = cos π
The general solution is
x = 2nπ ± π, n ∈ Z
x = 2nπ + π or x = 2nπ – π, n ∈ Z
Consider x = 2nπ + π
When n = 0 , x = 0 + π = π ∈ (0°, 360°)
When n = 1 , x = 2π + π = 3π ∉ (0°, 360°)
Consider x = 2nπ – π
When n = 0, x = 0 – π ∉ (0°, 360°)
When n = 1, x = 2π – π = π ∈ (0°, 360°)
When n = 2, x = 4π – π = 3π ∉ (0°, 360°)
∴ The required solution are x = `(2pi)/3, (4pi)/3, pi`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Prove that
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The smallest positive angle which satisfies the equation
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
The minimum value of 3cosx + 4sinx + 8 is ______.