Advertisements
Advertisements
प्रश्न
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
उत्तर
2 cos2x + 1 = – 3 cos x
2 cos2x + 3 cos x + 1 = 0
2 cos2x + 2 cos x + cos x + 1 = 0
2 cos x (cos x + 1) + 1(cos x + 1) = 0
(2 cos x + 1)(cos x + 1) = 0
2 cos x + 1 = 0 or cos x + 1 = 0
cos x = `- 1/2` or cos x = – 1
To find the solution of cos x = `- 1/2`
cos x = ` - 1/2`
cos x = `cos (pi - pi/3)`
x = `pi - pi/3`
= `(3pi - pi)/3`
= `(2pi)/3`
General solution is x = `2"n"pi + (2pi)/3`, n ∈ Z
x = `2"n"pi + (2pi)/3`
or
x = `2"n"pi - (2pi)/3`, n ∈ Z
Consider x = `2"n"pi + (2pi)/3`
When n = 0, x = `0 + (2pi)/3 = (2pi)/3` ∈ (0°, 360°)
When n = 1, x = `2pi + (2pi)/3 = (6pi + 2pi)/3 = (8pi)/3` ∉ (0°, 360°)
Consider x = `2"n"pi - (2pi)/3`
When n = 0, x = `0 - (2pi)/3 = - (2pi)/3` ∈ (0°, 360°)
When n = 1, x = `2pi - (2pi)/3 = (6pi - 2pi)/3 = (4pi)/3` ∈ (0°, 360°)
When n = 2, x = `4pi - (2pi)/3 = (12pi - 2pi)/3 = (10pi)/3` ∉ (0°, 360°)
To find the solution of cos x = – 1
cos x = – 1
cos x = cos π
The general solution is
x = 2nπ ± π, n ∈ Z
x = 2nπ + π or x = 2nπ – π, n ∈ Z
Consider x = 2nπ + π
When n = 0 , x = 0 + π = π ∈ (0°, 360°)
When n = 1 , x = 2π + π = 3π ∉ (0°, 360°)
Consider x = 2nπ – π
When n = 0, x = 0 – π ∉ (0°, 360°)
When n = 1, x = 2π – π = π ∈ (0°, 360°)
When n = 2, x = 4π – π = 3π ∉ (0°, 360°)
∴ The required solution are x = `(2pi)/3, (4pi)/3, pi`
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.