मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360° 2 cos2x + 1 = – 3 cos x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x

बेरीज

उत्तर

2 cos2x + 1 = – 3 cos x

2 cos2x + 3 cos x + 1 = 0

2 cos2x + 2 cos x + cos x + 1 = 0

2 cos x (cos x + 1) + 1(cos x + 1) = 0

(2 cos x + 1)(cos x + 1) = 0

2 cos x + 1 = 0 or cos x + 1 = 0

cos x = `- 1/2` or cos x = – 1

To find the solution of cos x = `- 1/2`

cos x = ` - 1/2`

cos x = `cos (pi - pi/3)`

x = `pi - pi/3`

= `(3pi - pi)/3`

= `(2pi)/3`

General solution is x = `2"n"pi + (2pi)/3`, n ∈ Z

x = `2"n"pi + (2pi)/3`

or

x = `2"n"pi - (2pi)/3`, n ∈ Z

Consider x = `2"n"pi + (2pi)/3`

When n = 0, x = `0 + (2pi)/3 = (2pi)/3` ∈ (0°, 360°)

When n = 1, x = `2pi + (2pi)/3 = (6pi + 2pi)/3 = (8pi)/3` ∉ (0°, 360°)

Consider x = `2"n"pi - (2pi)/3`

When n = 0, x = `0 - (2pi)/3 = - (2pi)/3` ∈ (0°, 360°)

When n = 1, x = `2pi - (2pi)/3 = (6pi - 2pi)/3 = (4pi)/3` ∈ (0°, 360°)

When n = 2, x = `4pi - (2pi)/3 = (12pi - 2pi)/3 = (10pi)/3` ∉ (0°, 360°)

To find the solution of cos x = – 1

cos x = – 1

cos x = cos π

The general solution is

x = 2nπ ± π, n ∈ Z

x = 2nπ + π or x = 2nπ – π, n ∈ Z

Consider x = 2nπ + π

When n = 0 , x = 0 + π = π ∈ (0°, 360°)

When n = 1 , x = 2π + π = 3π ∉ (0°, 360°)

Consider x = 2nπ – π

When n = 0, x = 0 – π ∉ (0°, 360°)

When n = 1, x = 2π – π = π ∈ (0°, 360°)

When n = 2, x = 4π – π = 3π ∉ (0°, 360°)

∴ The required solution are x = `(2pi)/3, (4pi)/3, pi`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.8 | Q 2. (ii) | पृष्ठ १३३

संबंधित प्रश्‍न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×