Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
Ideas required to solve the problem: The general solution of any trigonometric equation is given as:
sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
tan x + cot 2x = 0
⇒ tan x − cot 2x
We know that: cot θ = tan (π/2 − θ)
∴ `tan x = -tan (pi/2 - 2x)`
⇒ `tan x = tan (2x - pi/2) {∵ - tan θ = tan -θ}`
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y = `(2x - pi/2)`
∴ x = nπ + 2x − `pi/2`
⇒ `x = pi/2 - npi = pi/2(1 - 2n), "where" n ∈ Z`
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If sec x + tan x = k, cos x =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.