Advertisements
Advertisements
प्रश्न
Prove that
उत्तर
LHS = \[\frac{cosec \left( 90^\circ + x \right) + \cot \left( 450^\circ + x \right)}{cosec \left( 90^\circ - x \right) + \tan \left( 180^\circ - x \right)} + \frac{\tan \left( 180^\circ + x \right) + \sec \left( 180^\circ - x \right)}{\tan \left( 360^\circ + x \right) - \sec \left( - x \right)}\]
\[ = \frac{cosec\left( 90^\circ + x \right) + \cot\left( 450^\circ + x \right)}{cosec \left( 90^\circ - x \right) + \tan\left( 180^\circ - x \right)} + \frac{\tan \left( 180^\circ + x \right) + \sec \left( 180^\circ - x \right)}{\tan \left( 360^\circ + x \right) - \sec \left( - x \right)}\]
\[ = \frac{cosec\left( 90^\circ + x \right) + \cot \left( 90^\circ \times 5 + x \right)}{cosec\left( 90^\circ - x \right) + \tan \left( 90^\circ \times 2 - x \right)} + \frac{\tan \left( 90^\circ \times 2 + x \right) + \sec \left( 90^\circ \times 2 - x \right)}{\tan\left( 90^\circ \times 4 + x \right) - \sec\left( - x \right)}\]
\[ = \frac{\sec x + \cot \left( 90^\circ \times 5 + x \right)}{cosec\left( 90^\circ- x \right) + \tan \left( 90^\circ \times 2 - x \right)} + \frac{\tan \left( 90^\circ \times 2 + x \right) + \sec \left( 90^\circ \times 2 - x \right)}{\tan \left( 90^\circ \times 4 + x \right) - \sec \left( - x \right)}\]
\[ = \frac{\sec x - \tan x}{\sec x - \tan x} + \frac{\tan x - \sec x}{\tan x - \sec x}\]
\[ = 1 + 1\]
\[ = 2\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If sec x + tan x = k, cos x =
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of points of intersection of the curves
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.