Advertisements
Advertisements
प्रश्न
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
उत्तर
\[ \frac{13\pi}{3} = 780^\circ, \frac{8\pi}{3} = 480^\circ, \frac{2\pi}{3} = 120^\circ, \frac{5\pi}{6} = 150^\circ\]
LHS = \[\sin \left( 780^\circ \right) \sin \left( 480^\circ \right) + \cos \left( 120^\circ \right) \sin\left( 150^\circ \right)\]
\[ = \sin \left( 90^\circ \times 8 + 60^\circ \right) \sin \left( 90^\circ \times 5 + 30^\circ \right) + \cos \left( 90^\circ \times 1 + 30^\circ \right) \sin \left( 90^\circ \times 1 + 60^\circ \right)\]
\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) + \left[ - \sin \left( 30^\circ \right) \right] \cos \left( 60^\circ \right)\]
\[ = \sin \left( 60^\circ \right) \cos \left( 30^\circ \right) - \sin \left( 30^\circ \right) \cos\left( 60^\circ \right) \]
\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]
\[ = \frac{3}{4} - \frac{1}{4}\]
\[ = \frac{1}{2}\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
Write the solution set of the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[4 \sin^2 x = 1\], then the values of x are
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x