मराठी

Write the Number of Points of Intersection of the Curves 2 Y = 1 and Y = Cos X , 0 ≤ X ≤ 2 π . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 
बेरीज

उत्तर

Given curves: 

\[2y = 1\] and
\[y = \cos x\] 
Now, \[2y = 1 \Rightarrow y = \frac{1}{2}\]
Also,
\[\cos x = y\]
\[ \Rightarrow \cos x = \frac{1}{2}\]
\[ \Rightarrow \cos x = \cos \left( \frac{\pi}{3} \right)\text{ and }\cos x = \cos \left( \frac{4\pi}{3} \right)\]

\[\Rightarrow x = 2n\pi \pm \frac{\pi}{3} \text{ or }x = 2n\pi \pm \frac{4\pi}{3}\]

By putting n = 0, we get: 

\[x = \frac{\pi}{3}\text{ and }x = \frac{2\pi}{3}\]
For the other value of n,  the value of x will not satisfy the given condition.
Hence, the number of points of intersection of the curves is two, i.e.,
\[\frac{\pi}{3}\text{ and }\frac{4\pi}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.2 | Q 6 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan θ + sec θ =ex, then cos θ equals


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


If \[4 \sin^2 x = 1\], then the values of x are

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×