मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Solve the following equations:cos θ + cos 3θ = 2 cos 2θ - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ

बेरीज

उत्तर

cos 3θ + cos θ = 2 cos 2θ

`2 cos ((3theta + theta)/2) * cos ((3theta - theta)/2)` = 2 cos 2θ

`2cos ((4theta)/2) * cos ((2theta)/2)` = 2 cos 2θ 

2 cos 2θ . cos θ = 2 cos 2θ

cos 2θ . cos θ – cos 2θ = θ

cos 2θ (cos θ – 1) = θ

cos 2θ = θ or cos θ – 1 = θ

cos 2θ = θ or cos θ = 1

To find the general solution of cos 2θ = θ

The general solution is

2θ = `(2"n" + 1) pi/2`, n ∈ Z

θ = `(2"n" + 1) pi/4`, n ∈ Z

To find the general solution of cos θ = 1

cos θ = 1

cos θ = cos 0

The general solution is θ = 2nπ , n ∈ Z

∴ The required solutions are

θ = `(2"n" + 1) pi/4`, n ∈ Z

or

θ = 2nπ, n ∈ Z

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 3 Trigonometry
Exercise 3.8 | Q 3. (iii) | पृष्ठ १३३

संबंधित प्रश्‍न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3tanx + cot x = 5 cosec x


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×