Advertisements
Advertisements
प्रश्न
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
पर्याय
- \[\left( - \pi/4, \pi/4 \right)\]
- \[\left(\pi/4,3 \pi/4 \right)\]
- \[\left( 3\pi/4, 5\pi/4 \right)\]
- \[\left( 5\pi/4, 7\pi/4 \right)\]
उत्तर
Given equation:
\[\cos^2 x + \sin x + 1 = 0\]
\[ \Rightarrow (1 - \sin^2 x) + \sin x + 1 = 0\]
\[ \Rightarrow 2 - \sin^2 x + \sin x = 0\]
\[ \Rightarrow \sin^2 x - \sin x - 2 = 0\]
\[ \Rightarrow \sin^2 x - 2 \sin x + \sin x - 2 = 0\]
\[ \Rightarrow \sin x ( \sin x - 2 ) + 1 ( \sin x - 2 ) = 0\]
\[ \Rightarrow (\sin x - 2) ( \sin x + 1) = 0\]
\[\Rightarrow \sin x - 2 = 0\] or \[\sin x + 1 = 0\]
\[\Rightarrow \sin x = 2\] or sin x = - 1
Now,
sin x = 2 is not possible
And,
\[\sin x = - 1 \]
\[ \Rightarrow \sin x = \sin \frac{3\pi}{2} \]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{3\pi}{2}\]
For n = 0,
\[x = \frac{3\pi}{2}\], for n = 1,
\[x = \frac{7\pi}{2}\] and so on.
Hence,
\[\frac{3\pi}{2}\] lies in the interval
APPEARS IN
संबंधित प्रश्न
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If sec x + tan x = k, cos x =
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The smallest positive angle which satisfies the equation
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.