मराठी

Write the Number of Solutions of the Equation 4 Sin X − 3 Cos X = 7 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]

बेरीज

उत्तर

We have:
\[4 \sin x - 3 \cos x = 7\]
  ...(i)
The equation is of the form
\[a \sin x + b \cos x = c\], where
\[a = 4, b = - 3\] and \[c = 7\]
Now,
Let:
\[a = r \sin \alpha\] and \[a = r \sin \alpha\]
Thus, we have:
\[r = \sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5\] and
\[\tan \alpha = \frac{- 4}{3} \Rightarrow \alpha = \tan^{- 1} \left( - \frac{4}{3} \right)\]
By putting \[a = 4 = r \sin \alpha\] and \[b = - 3 = r \cos \alpha\]in equation (i), we get:
\[r \sin\alpha \sin x + r \cos\alpha \cos x = 7\]

\[\Rightarrow r \cos (x - \alpha) = 7\]

\[ \Rightarrow 5 \cos \left[ x - \tan^{- 1} \left( \frac{- 4}{3} \right) \right] = 7\]

\[ \Rightarrow \cos \left[ x - \tan^{- 1} \left( \frac{- 4}{3} \right) \right] = \frac{7}{5}\]

The solution is not possible.
Hence, the given equation has no solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.2 | Q 2 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Which of the following is incorrect?


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×