Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
पर्याय
b2 − 1, if `"b" ≤ sqrt(2)`
b2 − 1, if `"b" > sqrt(2)`
b2 − 1, if b ≥ 1
b2 − 1, if `"b" ≥ sqrt(2)`
उत्तर
b2 − 1, if `"b" ≤ sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Write the solution set of the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.