मराठी

If \[T_N = \Sin^N X + \Cos^N X\], Prove That \[2 T_6 - 3 T_4 + 1 = 0\] - Mathematics

Advertisements
Advertisements

प्रश्न

If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]

उत्तर

LHS:  \[2 T_6 - 3 T_4 + 1\]
\[2\left( \sin^6 x + \cos^6 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2\left( \sin^2 x + \cos^2 x \right)\left( \sin^4 x + \cos^4 x - \sin^2 x \cos^2 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2 . 1 . \left( \sin^4 x + \cos^4 x - \sin^2 x \cos^2 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2 \sin^4 x + 2 \cos^4 x - 2 \sin^2 x \cos^2 x - 3 \sin^4 x - 3 \cos^4 x + 1\]
\[ - \left( \sin^4 x + \cos^4 x \right) - \sin^2 x \cos^2 x + 1\]
\[ - ( \sin^2 x + \cos^2 x )^2 + 1\]
\[ - 1 + 1\]
\[0\]
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.1 | Q 26.2 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×