Advertisements
Advertisements
प्रश्न
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
उत्तर
Disclaimer: There is some error in the given question.
The question should have been Question: If \[a = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that \[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.
So, the solution is done accordingly.
\[a = \frac{2\sin x}{1 + \sin x + \cos x}\]
Rationalising the denominator:
\[\frac{2\sin x}{1 + \sin x + \cos x} \times \frac{\left( 1 + \sin x \right) - \cos x}{\left( 1 + \sin x \right) - \cos x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{\left( 1 + \sin x \right)^2 - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{1 + \sin^2 x + 2\sin x - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2 \sin^2 x + 2\sin x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2\sin x\left( 1 + \sin x \right)}\]
\[ = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
\[ \therefore a = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.