English

If X = 2 Sin X 1 + Cos X + Sin X , Then Prove that 1 − Cos X + Sin X 1 + Sin X is Also Equal to A. - Mathematics

Advertisements
Advertisements

Question

If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Solution

Disclaimer: There is some error in the given question.
The question should have been Question: If \[a = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that \[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.
So, the solution is done accordingly.
\[a = \frac{2\sin x}{1 + \sin x + \cos x}\]
Rationalising the denominator: 
\[\frac{2\sin x}{1 + \sin x + \cos x} \times \frac{\left( 1 + \sin x \right) - \cos x}{\left( 1 + \sin x \right) - \cos x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{\left( 1 + \sin x \right)^2 - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{1 + \sin^2 x + 2\sin x - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2 \sin^2 x + 2\sin x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2\sin x\left( 1 + \sin x \right)}\]
\[ = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
\[ \therefore a = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 17 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×