Advertisements
Advertisements
Question
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
Solution
Disclaimer: There is some error in the given question.
The question should have been Question: If \[a = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that \[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.
So, the solution is done accordingly.
\[a = \frac{2\sin x}{1 + \sin x + \cos x}\]
Rationalising the denominator:
\[\frac{2\sin x}{1 + \sin x + \cos x} \times \frac{\left( 1 + \sin x \right) - \cos x}{\left( 1 + \sin x \right) - \cos x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{\left( 1 + \sin x \right)^2 - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{1 + \sin^2 x + 2\sin x - \cos^2 x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2 \sin^2 x + 2\sin x}\]
\[ = \frac{2\sin x\left\{ \left( 1 + \sin x \right) - \cos x \right\}}{2\sin x\left( 1 + \sin x \right)}\]
\[ = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
\[ \therefore a = \frac{\left( 1 + \sin x \right) - \cos x}{1 + \sin x}\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of cosec x = –2
Find the general solution of the equation sin 2x + cos x = 0
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that
Prove that
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the solution set of the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.