Advertisements
Advertisements
Question
Prove that
Solution
LHS = \[\frac{\sin \left( 180^\circ + x \right)\cos\left( 90^\circ + x \right) \tan \left( 270^\circ - x \right)\cot \left( 360^\circ - x \right)}{\sin \left( 360^\circ - x \right)\cos\left( 360^\circ + x \right)cosec\left( - x \right) \sin \left( 270^\circ + x \right)} \]
\[ = \frac{\sin \left( 90 \times 2^\circ + x \right)\cos\left( 90^\circ \times 1 + x \right) \tan\left( 90^\circ \times 3 - x \right) \cot\left( 90^\circ \times 4 - x \right)}{\sin\left( 90^\circ \times 4 - x \right)\cos\left( 90^\circ \times 4 + x \right) cosec \left( - x \right) \sin \left( 90^\circ \times 3 + x \right)}\]
\[ = \frac{- \sin x \left[ - \sin x \right] \cot x\left[ - \cot x \right]}{\left[ - \sin x \right] \cos x \left[ - cosec x \right]\left[ - \cos x \right]}\]
\[ = \frac{\sin^2 x \cot^2 x}{\sin x cosec x \cos x \cos x}\]
\[ = \frac{\sin^2 x \times \frac{\cos^2 x}{\sin^2 x}}{\sin x \times \frac{1}{\sin x} \times \cos^2 x}\]
\[ = \frac{\cos^2 x}{\cos^2 x}\]
\[ = 1\]
= RHS
Hence proved .
APPEARS IN
RELATED QUESTIONS
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
In a ∆ABC, prove that:
In a ∆ABC, prove that:
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
Write the solution set of the equation
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[4 \sin^2 x = 1\], then the values of x are
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2