English

Prove that Sin ( 180 ∘ + X ) Cos ( 90 ∘ + X ) Tan ( 270 ∘ − X ) Cot ( 360 ∘ − X ) Sin ( 360 ∘ − X ) Cos ( 360 ∘ + X ) C O S E C ( − X ) Sin ( 270 ∘ + X ) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 

Solution

 LHS = \[\frac{\sin \left( 180^\circ + x \right)\cos\left( 90^\circ + x \right) \tan \left( 270^\circ - x \right)\cot \left( 360^\circ - x \right)}{\sin \left( 360^\circ - x \right)\cos\left( 360^\circ + x \right)cosec\left( - x \right) \sin \left( 270^\circ + x \right)} \]
\[ = \frac{\sin \left( 90 \times 2^\circ + x \right)\cos\left( 90^\circ \times 1 + x \right) \tan\left( 90^\circ \times 3 - x \right) \cot\left( 90^\circ \times 4 - x \right)}{\sin\left( 90^\circ \times 4 - x \right)\cos\left( 90^\circ \times 4 + x \right) cosec \left( - x \right) \sin \left( 90^\circ \times 3 + x \right)}\]
\[ = \frac{- \sin x \left[ - \sin x \right] \cot x\left[ - \cot x \right]}{\left[ - \sin x \right] \cos x \left[ - cosec x \right]\left[ - \cos x \right]}\]
\[ = \frac{\sin^2 x \cot^2 x}{\sin x cosec x \cos x \cos x}\]
\[ = \frac{\sin^2 x \times \frac{\cos^2 x}{\sin^2 x}}{\sin x \times \frac{1}{\sin x} \times \cos^2 x}\]
\[ = \frac{\cos^2 x}{\cos^2 x}\]
\[ = 1\]
 = RHS
Hence proved .

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 3.3 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Which of the following is incorrect?


Which of the following is correct?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[4 \sin^2 x = 1\], then the values of x are

 


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×