English

Solve the Following Equation: √ 3 Cos X + Sin X = 1 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]

Sum

Solution

 Given:

\[\sqrt{3} \cos x + \sin x = 1\] ...(i)
The equation is of the form of \[a \cos x + b \sin x = c\], where
\[a = \sqrt{3}, b = 1\] and C = 1.
Let: q = r cos α and \[a = r \cos \alpha\]
Now,
\[r = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3} )^2 + 1^2} = 2\] and
\[\tan \alpha = \frac{b}{a} = \frac{1}{\sqrt{3}} \Rightarrow \alpha = \frac{\pi}{6}\]
On putting
\[a = \sqrt{3} = r \cos \alpha\] and b =1 = r sinα  in equation (i), we get:
\[r \cos \alpha \cos x + r \sin \alpha \sin x = 1\]

\[\Rightarrow r \cos (x - \alpha) \hspace{0.167em} = 1\]

\[ \Rightarrow 2 \cos (x - \alpha) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \frac{1}{2}\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{6} \right) = \cos \frac{\pi}{3}\]

\[ \Rightarrow x - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}, n \in Z\]

On taking positive sign, we get:

\[x - \frac{\pi}{6} = 2n\pi + \frac{\pi}{3} \]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{3} + \frac{\pi}{6}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
\[ \Rightarrow x = (4n + 1)\frac{\pi}{2}, n \in Z\]
Now, on taking negative sign of the equation, we get:
\[x - \frac{\pi}{6} = 2m\pi - \frac{\pi}{3}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{3} + \frac{\pi}{6}, m \in Z\]
\[ \Rightarrow x = 2m\pi - \frac{\pi}{6} = (12m - 1) \frac{\pi}{6}, m \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 6.2 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If sec x + tan x = k, cos x =


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the general solutions of tan2 2x = 1.

 

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


General solution of \[\tan 5 x = \cot 2 x\] is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×