English

If T N = Sin N X + Cos N X , Prove that 6 T 10 − 15 T 8 + 10 T 6 − 1 = 0 - Mathematics

Advertisements
Advertisements

Question

If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]

Solution

LHS = \[6 T_{10} - 15 T_8 + 10 T_6 - 1\]
\[=6\left( \sin^{10} x + \cos^{10} x \right) - 15\left( \sin^8 x + \cos^8 x \right) + 10\left( \sin^6 x + \cos^6 x \right) - 1\]
`=6(sin^2x+cos^2x)(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=6(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=6sin^8x+6cos^8x-6sin^2xcos^2x-15sin^8x-15cos^8x+10(sin^6x+cos^6x)-1`

`=-6sin^2xcos^2x-9sin^8x-9cos^8x+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^2x+cos^2x)(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9sin^6x-9cos^6x+9sin^2xcos^2x+10sin^6x+10cos^6x-1`
`=3sin^2xcos^2x+sin^6x+cos^6x-1`
`=3sin^2xcos^2x+(sin^2x+cos^2x)(sin^4x+cos^4x-sin^2xcos^2x)-1`
`=3sin^2xcos^2x+sin^4x+cos^4x-sin^2xcos^2x-1`

`=(sin^2x)^2+2sin^2xcos^2x+(cos^2x)^2-1`
`=(sin^2x+cos^2x)^2-1`
=12-1
=0
=RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 26.3 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of cosec x = –2


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If tan θ + sec θ =ex, then cos θ equals


Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


General solution of \[\tan 5 x = \cot 2 x\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×