English

Find the value of the other five trigonometric functions \[\cot x = \frac{12}{5},\] x in quadrant III - Mathematics

Advertisements
Advertisements

Question

Find the value of the other five trigonometric functions 

\[\cot x = \frac{12}{5},\] x in quadrant III

Solution

 We have:
\[\cot x = \frac{12}{5} \text{ and }x \text{ are in the third quadrant. }\]
\[\text{ In the third quadrant,} \tan x \text{ and }\cot x\text{ are positive }\]
\[\text{ And, }\sin x, \cos x , \sec x\text{ and cosec x are negative. }\]
\[\therefore \tan x = \frac{1}{\cot x} = \frac{1}{\frac{12}{5}} = \frac{5}{12}\]
\[cosec x = - \sqrt{1 +\cot^2 x} = - \sqrt{1 + \left( \frac{12}{5} \right)^2} = - \frac{13}{5}\]
\[\sin x = \frac{1}{cosecx} = \frac{1}{- \frac{13}{5}} = - \frac{5}{13}\]
\[\cos x = - \sqrt{1 - \sin^2 x} = - \sqrt{1 - \left( \frac{- 5}{13} \right)^2} = \frac{- 12}{13}\]
\[\text{ And, }\sec x = \frac{1}{\cos x} = \frac{1}{\frac{- 12}{13}} = \frac{- 13}{12}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.2 | Q 1.1 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.


Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.


Find the values of other five trigonometric function if `sec x = 13/5`, x  lies in fourth quadrant.


Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.


Find the value of the trigonometric function sin 765°.


Find the value of the trigonometric function cosec (–1410°).


Find the value of the trigonometric function tan `(19pi)/3`.


Find the value of the trigonometric function sin `(-11pi)/3`.


Find the value of the trigonometric function cot `(-(  15pi)/4)`.


Prove that: `2  cos  pi/13 cos  (9pi)/13 + cos  (3pi)/13 + cos  (5pi)/13 = 0`


Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0


Find the value of the other five trigonometric functions 

\[\cos x = - \frac{1}{2},\] x in quadrant II

Find the value of the other five trigonometric functions 
\[\tan x = \frac{3}{4},\] x in quadrant III


Find the value of the other five trigonometric functions
\[\sin x = \frac{3}{5},\] x in quadrant I


If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.


If sin\[x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2},\]  find the value of 8 tan \[x - \sqrt{5} \sec y\]


If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.

 

If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]


Find the value of the following trigonometric ratio:

\[\sin\frac{5\pi}{3}\]




Find the value of the following trigonometric ratio:
sin 17π


Find the value of the following trigonometric ratio:

\[\cos\left( - \frac{25\pi}{4} \right)\]

Find the value of the following trigonometric ratio:
\[\tan \frac{7\pi}{4}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×