Advertisements
Advertisements
Question
Find the value of the other five trigonometric functions
Solution
We have:
\[\cot x = \frac{12}{5} \text{ and }x \text{ are in the third quadrant. }\]
\[\text{ In the third quadrant,} \tan x \text{ and }\cot x\text{ are positive }\]
\[\text{ And, }\sin x, \cos x , \sec x\text{ and cosec x are negative. }\]
\[\therefore \tan x = \frac{1}{\cot x} = \frac{1}{\frac{12}{5}} = \frac{5}{12}\]
\[cosec x = - \sqrt{1 +\cot^2 x} = - \sqrt{1 + \left( \frac{12}{5} \right)^2} = - \frac{13}{5}\]
\[\sin x = \frac{1}{cosecx} = \frac{1}{- \frac{13}{5}} = - \frac{5}{13}\]
\[\cos x = - \sqrt{1 - \sin^2 x} = - \sqrt{1 - \left( \frac{- 5}{13} \right)^2} = \frac{- 12}{13}\]
\[\text{ And, }\sec x = \frac{1}{\cos x} = \frac{1}{\frac{- 12}{13}} = \frac{- 13}{12}\]
APPEARS IN
RELATED QUESTIONS
Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.
Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.
Find the values of other five trigonometric function if `sec x = 13/5`, x lies in fourth quadrant.
Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.
Find the value of the trigonometric function sin 765°.
Find the value of the trigonometric function cosec (–1410°).
Find the value of the trigonometric function tan `(19pi)/3`.
Find the value of the trigonometric function sin `(-11pi)/3`.
Find the value of the trigonometric function cot `(-( 15pi)/4)`.
Prove that: `2 cos pi/13 cos (9pi)/13 + cos (3pi)/13 + cos (5pi)/13 = 0`
Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
\[\tan x = \frac{3}{4},\] x in quadrant III
Find the value of the other five trigonometric functions
\[\sin x = \frac{3}{5},\] x in quadrant I
If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.
If sin\[x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2},\] find the value of 8 tan \[x - \sqrt{5} \sec y\]
If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.
If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
sin 17π
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
\[\tan \frac{7\pi}{4}\]