Advertisements
Advertisements
Question
Find the value of the following trigonometric ratio:
Solution
We have:
\[\cos\left( - \frac{25\pi}{4} \right) = \cos\left( 1125^\circ \right)\]
\[\cos \left( - 1125^\circ \right) = \cos \left( 1125^\circ \right) = \cos \left( 90^\circ \times 12 + 45^\circ \right)\]
\[1125^\circ \text{ lies in the first quadrant in which the cosine function is positive . }\]
Also, 12 is an even integer .
\[ \therefore \cos\left( - 1125^\circ \right) = \cos\left( 1125^\circ \right) = \cos\left( 90^\circ \times 12 + 45^\circ \right) = \cos 45^\circ = \frac{1}{\sqrt{2}}\]
APPEARS IN
RELATED QUESTIONS
Find the values of other five trigonometric functions if `sin x = 3/5` x lies in second quadrant.
Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.
Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.
Find the value of the trigonometric function cosec (–1410°).
Find the value of the trigonometric function tan `(19pi)/3`.
Find the value of the trigonometric function sin `(-11pi)/3`.
Find the value of the trigonometric function cot `(-( 15pi)/4)`.
Prove that: `2 cos pi/13 cos (9pi)/13 + cos (3pi)/13 + cos (5pi)/13 = 0`
Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
\[\tan x = \frac{3}{4},\] x in quadrant III
Find the value of the other five trigonometric functions
\[\sin x = \frac{3}{5},\] x in quadrant I
If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.
If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
sin 17π
Find the value of the following trigonometric ratio:
\[\tan\frac{11\pi}{6}\]
Find the value of the following trigonometric ratio:
\[\tan \frac{7\pi}{4}\]