English

Find the value of the trigonometric function cot (- 15π4). - Mathematics

Advertisements
Advertisements

Question

Find the value of the trigonometric function cot `(-(  15pi)/4)`.

Sum

Solution

cot = `((−15π)/4) = "cot" ((- 15π)/4)`     [∵ cot (-θ) = – cot θ]

= cot `(4π-π/4)`

= cot `(-π/4)`     [∵ cot (2nπ±θ) = cot( ± θ)]

= cot `π/4`     [∵ cot (-θ) = - cot θ]

= 1. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.2 [Page 63]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise 3.2 | Q 10 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.


Find the values of other five trigonometric functions if `sin x = 3/5` x lies in second quadrant.


Find the values of other five trigonometric function if `sec x = 13/5`, x  lies in fourth quadrant.


Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.


Find the value of the trigonometric function sin 765°.


Find the value of the trigonometric function cosec (–1410°).


Find the value of the trigonometric function tan `(19pi)/3`.


Find the value of the trigonometric function sin `(-11pi)/3`.


Prove that: `2  cos  pi/13 cos  (9pi)/13 + cos  (3pi)/13 + cos  (5pi)/13 = 0`


Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0


Find the value of the other five trigonometric functions 

\[\cot x = \frac{12}{5},\] x in quadrant III

Find the value of the other five trigonometric functions 

\[\cos x = - \frac{1}{2},\] x in quadrant II

Find the value of the other five trigonometric functions 
\[\tan x = \frac{3}{4},\] x in quadrant III


If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.


If sin\[x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2},\]  find the value of 8 tan \[x - \sqrt{5} \sec y\]


If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]


Find the value of the following trigonometric ratio:

\[\sin\frac{5\pi}{3}\]




Find the value of the following trigonometric ratio:
sin 17π


Find the value of the following trigonometric ratio:
\[\tan\frac{11\pi}{6}\]


Find the value of the following trigonometric ratio:

\[\cos\left( - \frac{25\pi}{4} \right)\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×