Advertisements
Advertisements
Question
If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]
Solution
We have:
\[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\]
Thus, x is in the third quadrant.
In the third quadrant, tan x and cot x are positive
And, all the other four T - ratios are negative.
\[ \therefore \sin x = - \sqrt{1 - \cos^2 x} = - \sqrt{1 - \left( \frac{- 3}{5} \right)^2} = \frac{- 4}{5}\]
\[\tan x = \frac{\sin x}{\cos x} = \frac{\frac{- 4}{5}}{- \frac{3}{5}} = \frac{4}{3}\]
\[\cot x = \frac{1}{\tan x} = \frac{1}{\frac{4}{3}} = \frac{3}{4}\]
\[\sec x = \frac{1}{\cos x} = \frac{1}{\frac{- 3}{5}} = \frac{- 5}{3}\]
\[cosec x = \frac{1}{\sin x} = \frac{1}{\frac{- 4}{5}} = \frac{- 5}{4}\]
\[\text{ Now, }\frac{cosec\theta + \cot\theta}{\sec\theta - \tan\theta} = \frac{\frac{- 5}{4} + \frac{3}{4}}{\frac{- 5}{3} - \frac{4}{3}}\]
\[ = \frac{\frac{- 2}{4}}{\frac{- 9}{3}}\]
\[ = \frac{\frac{- 1}{2}}{- 3} = \frac{1}{6}\]
APPEARS IN
RELATED QUESTIONS
Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.
Find the values of other five trigonometric functions if `sin x = 3/5` x lies in second quadrant.
Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.
Find the values of other five trigonometric function if `sec x = 13/5`, x lies in fourth quadrant.
Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.
Find the value of the trigonometric function sin 765°.
Find the value of the trigonometric function tan `(19pi)/3`.
Find the value of the trigonometric function sin `(-11pi)/3`.
Find the value of the trigonometric function cot `(-( 15pi)/4)`.
Prove that: `2 cos pi/13 cos (9pi)/13 + cos (3pi)/13 + cos (5pi)/13 = 0`
Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
\[\tan x = \frac{3}{4},\] x in quadrant III
Find the value of the other five trigonometric functions
\[\sin x = \frac{3}{5},\] x in quadrant I
If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.
If sin\[x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2},\] find the value of 8 tan \[x - \sqrt{5} \sec y\]
If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
sin 17π
Find the value of the following trigonometric ratio:
\[\tan\frac{11\pi}{6}\]
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
\[\tan \frac{7\pi}{4}\]