English

If Sin X = 3 5 , Tan Y = 1 2 and π 2 < X < π < Y < 3 π 2 , Find the Value of 8 Tan X − √ 5 Sec Y - Mathematics

Advertisements
Advertisements

Question

If sin\[x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2},\]  find the value of 8 tan \[x - \sqrt{5} \sec y\]

Solution

We have:
\[\sin x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2}, \]
Thus, x is in the second quadrant and y is in the third quadrant. 
\[\text{ In the second quadrant, }\cos x \text{ and }\tan x \text{are negative.} \]
In the third quadrant, secy is negative .
\[\therefore \cos x = - \sqrt{1 - \sin^2 x} = - \sqrt{1 - \left( \frac{3}{5} \right)^2} = \frac{- 4}{5}\]
\[\tan x = \frac{\frac{3}{5}}{\frac{- 4}{5}} = \frac{- 3}{4}\]
\[\text{ And, }\sec y = - \sqrt{1 + \tan^2 y} = - \sqrt{1 + \left( \frac{1}{2} \right)^2} = \frac{- \sqrt{5}}{2}\]
\[ \therefore 8 \tan x - \sqrt{5} \sec y = 8 \times \frac{- 3}{4} - \sqrt{5} \times \frac{- \sqrt{5}}{2} = - 6 + \frac{5}{2} = - \frac{7}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.2 | Q 3 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.


Find the values of other five trigonometric functions if `sin x = 3/5` x lies in second quadrant.


Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.


Find the values of other five trigonometric function if `sec x = 13/5`, x  lies in fourth quadrant.


Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.


Find the value of the trigonometric function sin 765°.


Find the value of the trigonometric function cosec (–1410°).


Find the value of the trigonometric function tan `(19pi)/3`.


Find the value of the trigonometric function sin `(-11pi)/3`.


Prove that: `2  cos  pi/13 cos  (9pi)/13 + cos  (3pi)/13 + cos  (5pi)/13 = 0`


Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0


Find the value of the other five trigonometric functions 

\[\cos x = - \frac{1}{2},\] x in quadrant II

Find the value of the other five trigonometric functions 
\[\tan x = \frac{3}{4},\] x in quadrant III


Find the value of the other five trigonometric functions
\[\sin x = \frac{3}{5},\] x in quadrant I


If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.


If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.

 

If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]


Find the value of the following trigonometric ratio:

\[\sin\frac{5\pi}{3}\]




Find the value of the following trigonometric ratio:

\[\cos\left( - \frac{25\pi}{4} \right)\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×