Advertisements
Advertisements
Question
Find the values of other five trigonometric functions if `sin x = 3/5` x lies in second quadrant.
Solution
sin x = `3/5 = "AB"/"OB"`
Here AB = 3 units
∴ OB = 5 units
OA = `sqrt("OB"^2-"AB"^2)`
= `sqrt(25-9)` = ± 4
Now OA = – 4 (as it is in OX' direction.)
AB = 3
OB = 5
cos x = `"OA"/"OB" = (- 4)/5`,
tan x = `"AB"/"OA" = 3/(-4) = -3/4`
cosec x = `"OB"/"AB" = 5/3`, sec x = `"OB"/"OA"` = - `5/4`
cot x = `"OA"/"AB" = (-4)/3`
APPEARS IN
RELATED QUESTIONS
Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.
Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.
Find the values of other five trigonometric function if `sec x = 13/5`, x lies in fourth quadrant.
Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.
Find the value of the trigonometric function sin 765°.
Find the value of the trigonometric function cosec (–1410°).
Find the value of the trigonometric function tan `(19pi)/3`.
Find the value of the trigonometric function sin `(-11pi)/3`.
Find the value of the trigonometric function cot `(-( 15pi)/4)`.
Prove that: `2 cos pi/13 cos (9pi)/13 + cos (3pi)/13 + cos (5pi)/13 = 0`
Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
\[\tan x = \frac{3}{4},\] x in quadrant III
If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.
If sin\[x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2},\] find the value of 8 tan \[x - \sqrt{5} \sec y\]
If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
sin 17π
Find the value of the following trigonometric ratio:
\[\tan\frac{11\pi}{6}\]
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
\[\tan \frac{7\pi}{4}\]