Advertisements
Advertisements
Question
Find the value of the following trigonometric ratio:
sin 17π
Solution
We have:
\[\sin 17\pi = \sin 3060^\circ\]
\[3060^\circ = 90^\circ \times 34 + 0^\circ\]
\[\text{ Clearly 3060^\circ is in the negative direction of the x - axis, i . e . on the boundary line of the II and III quadrants .} \]
Also, 34 is an even integer.
\[ \therefore \sin\left( 3060^\circ \right) = \sin \left( 90^\circ \times 34 + 0^\circ \right) = - \sin 0^\circ = 0\]
APPEARS IN
RELATED QUESTIONS
Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.
Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.
Find the values of other five trigonometric function if `sec x = 13/5`, x lies in fourth quadrant.
Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.
Find the value of the trigonometric function sin 765°.
Find the value of the trigonometric function cosec (–1410°).
Find the value of the trigonometric function tan `(19pi)/3`.
Find the value of the trigonometric function cot `(-( 15pi)/4)`.
Prove that: `2 cos pi/13 cos (9pi)/13 + cos (3pi)/13 + cos (5pi)/13 = 0`
Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.
If sin\[x = \frac{3}{5}, \tan y = \frac{1}{2}\text{ and }\frac{\pi}{2} < x < \pi < y < \frac{3\pi}{2},\] find the value of 8 tan \[x - \sqrt{5} \sec y\]
If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.
If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]
Find the value of the following trigonometric ratio:
\[\tan\frac{11\pi}{6}\]
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
\[\tan \frac{7\pi}{4}\]