Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric function cot `(-( 15pi)/4)`.
उत्तर
cot = `((−15π)/4) = "cot" ((- 15π)/4)` [∵ cot (-θ) = – cot θ]
= cot `(4π-π/4)`
= cot `(-π/4)` [∵ cot (2nπ±θ) = cot( ± θ)]
= cot `π/4` [∵ cot (-θ) = - cot θ]
= 1.
APPEARS IN
संबंधित प्रश्न
Find the values of other five trigonometric functions if `cos x = -1/2`, x lies in third quadrant.
Find the values of other five trigonometric functions if `sin x = 3/5` x lies in second quadrant.
Find the values of other five trigonometric function if `cot x = 3/4`, x lies in quadrant.
Find the values of other five trigonometric function if `sec x = 13/5`, x lies in fourth quadrant.
Find the values of other five trigonometric functions if ` tan x = - 5/12`, x lies in second quadrant.
Find the value of the trigonometric function sin 765°.
Find the value of the trigonometric function tan `(19pi)/3`.
Find the value of the trigonometric function sin `(-11pi)/3`.
Prove that: `2 cos pi/13 cos (9pi)/13 + cos (3pi)/13 + cos (5pi)/13 = 0`
Prove that: (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
Find the value of the other five trigonometric functions
\[\tan x = \frac{3}{4},\] x in quadrant III
Find the value of the other five trigonometric functions
\[\sin x = \frac{3}{5},\] x in quadrant I
If sin \[x = \frac{12}{13}\] and x lies in the second quadrant, find the value of sec x + tan x.
If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.
If \[\cos x = - \frac{3}{5}\text{ and }\pi < x < \frac{3\pi}{2}\] find the values of other five trigonometric functions and hence evaluate \[\frac{cosec x + \cot x}{\sec x - \tan x}\]
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
sin 17π
Find the value of the following trigonometric ratio:
\[\tan\frac{11\pi}{6}\]
Find the value of the following trigonometric ratio:
Find the value of the following trigonometric ratio:
\[\tan \frac{7\pi}{4}\]