Advertisements
Advertisements
Question
Prove that
Solution
LHS =\[ \frac{\tan \left( 90^\circ - x \right) \sec \left( 180^\circ - x \right) \sin \left( - x \right)}{\sin\left( 180^\circ + x \right)\cot \left( 360^\circ - x \right)cosec \left( 90^\circ - x \right)} \]
\[ = \frac{\tan \left( 90^\circ \times 1 - x \right) \sec \left( 90^\circ \times 2 - x \right)\sin \left( - x \right)}{\sin \left( 90^\circ \times 2 + x \right) \cot \left( 90^\circ \times 4 - x \right)cosec \left( 90^\circ \times 1 - x \right)}\]
\[ = \frac{\cot x\left[ - \sec x \right]\left[ - \sin x \right]}{\left[ - \sin x \right]\left[ - \cot x \right] \sec x}\]
\[ = \frac{\cot x \sec x \sin x}{\sin x \cot x \sec x}\]
\[ = \frac{\frac{\cos x}{\sin x} \times \frac{1}{\cos x} \times \sin x}{\sin x \times \frac{\cos x}{\sin x} \times \frac{1}{\cos x}}\]
\[ = \frac{1}{1}\]
\[ = 1\]
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the set of values of a for which the equation
Write the number of points of intersection of the curves
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
The minimum value of 3cosx + 4sinx + 8 is ______.