Advertisements
Advertisements
Question
Find the general solution of the following equation:
Solution
We have:
\[ \Rightarrow \sin x - \frac{\sin x}{\cos x} = 0\]
\[ \Rightarrow \sin x \left( 1 - \frac{1}{\cos x} \right) = 0\]
\[ \Rightarrow \sin x (\cos x - 1) = 0\]
\[\cos x - 1 = 0 \]
\[ \Rightarrow \cos x = 1 \]
\[ \Rightarrow \cos x = \cos0 \]
\[ \Rightarrow x = 2m\pi, m \in Z\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation sin 2x + cos x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of points of intersection of the curves
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.