English

Find the General Solution of the Following Equation: Sin X = Tan X - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the following equation:

\[\sin x = \tan x\]
Sum

Solution

We have:

\[\sin x = \tan x\]
\[\Rightarrow \sin x - \tan x = 0\]
\[ \Rightarrow \sin x - \frac{\sin x}{\cos x} = 0\]
\[ \Rightarrow \sin x \left( 1 - \frac{1}{\cos x} \right) = 0\]
\[ \Rightarrow \sin x (\cos x - 1) = 0\]
\[\Rightarrow \sin x = 0\] or
\[\cos x - 1 = 0\]
Now,  
\[\sin x = 0 \Rightarrow x = n\pi, n \in Z\]

\[\cos x - 1 = 0 \]

\[ \Rightarrow \cos x = 1 \]

\[ \Rightarrow \cos x = \cos0 \]

\[ \Rightarrow x = 2m\pi, m \in Z\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 2.11 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation sin 2x + cos x = 0


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×