Advertisements
Advertisements
Question
Find the general solution of the following equation:
Solution
Given,
sin 3x + cos 2x = 0
We know that: sin θ = cos `(π/2 - theta)`
∴ cos 2x = −sin 3x
⇒ cos 2x = −cos`(pi/2- 3x)`
We know that: −cos θ = cos (π – θ)
∴ cos 2x = cos`(pi - (pi/2 - 3x))`
⇒ cos 2x cos `(pi/2 + 3x)`
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
From above expression and on comparison with standard equation we have:
`y = (pi/2 + 3x)`
∴ 2x = 2nπ ± `(pi/2 + 3x)`
Hence,
`2x = 2npi + pi/2 + 3x or 2x = 2npi - pi/2 - 3x`
∴ `x = -pi/2 - 2npi or 5x = 2npi - pi/2`
⇒ `x = -pi/2 (1 + 4n) or x = pi/10 (4n - 1)`
∴ `x = -pi/2 (4n + 1) or pi/10 (4n - 1)`, where n ∈ Z
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of cosec x = –2
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the general solutions of tan2 2x = 1.
Write the number of points of intersection of the curves
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\cot x - \tan x = \sec x\], then, x is equal to
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
The minimum value of 3cosx + 4sinx + 8 is ______.