English

Prove That: Sin 13 π 3 Sin 2 π 3 + Cos 4 π 3 Sin 13 π 6 = 1 2 - Mathematics

Advertisements
Advertisements

Question

Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]

Solution

\[ \frac{13\pi}{3} = 780^\circ, \frac{2\pi}{3} = 120^\circ, \frac{4\pi}{3} = 240^\circ, \frac{13\pi}{6} = 390^\circ\]
LHS = \[\sin\left( 780^\circ \right) \sin\left( 120^\circ \right) + \cos\left( 240^\circ \right) \sin\left( 390^\circ \right)\]
\[ = \sin\left( 90^\circ \times 8 + 60^\circ \right) \sin\left( 90^\circ \times 1 + 30^\circ \right) + \cos\left( 90^\circ \times 2 + 60^\circ \right) \sin\left( 90^\circ \times 4 + 30^\circ \right)\]
\[ = \sin 60^\circ \cos 30^\circ + \left[ - \cos 60^\circ \right] \sin 30^\circ\]
\[ = \sin 60^\circ \cos 30^\circ - \cos 60^\circ\sin 30^\circ\]
\[ = \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}\]
\[ = \frac{3}{4} - \frac{1}{4}\]
\[ = \frac{1}{2}\]
 = RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.3 | Q 9.3 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the general solutions of tan2 2x = 1.

 

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×